Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion
نویسندگان
چکیده
Modulation of human cortical excitability by repetitive transcranial magnetic stimulation (rTMS) appears to be in part related to changed activity of inhibitory systems. Our own studies showed that intermittent theta-burst stimulation (iTBS) applied via rTMS to rat cortex primarily affects the parvalbumin-expressing (PV) fast-spiking interneurons (FSIs), evident via a strongly reduced PV expression. We further found the iTBS effect on PV to be age-dependent since no reduction in PV could be induced before the perineuronal nets (PNNs) of FSIs start to grow around postnatal day (PD) 30. To elucidate possible iTBS-induced changes in the electrical properties of FSIs and cortical network activity during cortical critical period, we performed ex vivo-in vitro whole-cell patch clamp recordings from pre-labeled FSIs in the current study. FSIs of verum iTBS-treated rats displayed a higher excitability than sham-treated controls at PD29-38, evident as higher rates of induced action potential firing at low current injections (100-200 pA) and a more depolarized resting membrane potential. This effect was absent in younger (PD26-28) and older animals (PD40-62). Slices of verum iTBS-treated rats further showed higher rates of spontaneous excitatory postsynaptic currents (sEPSCs). Based on these and previous findings we conclude that FSIs are particularly sensitive to TBS during early cortical development, when FSIs show an activity-driven step of maturation which is paralleled by intense growth of the PNNs and subsequent closure of the cortical critical period. Although to be proven further, rTMS may be a possible early intervention to compensate for hypo-activity related mal-development of cortical neuronal circuits.
منابع مشابه
Theta-burst transcranial magnetic stimulation alters cortical inhibition.
Human cortical excitability can be modified by repetitive transcranial magnetic stimulation (rTMS), but the cellular mechanisms are largely unknown. Here, we show that the pattern of delivery of theta-burst stimulation (TBS) (continuous versus intermittent) differently modifies electric activity and protein expression in the rat neocortex. Intermittent TBS (iTBS), but not continuous TBS (cTBS),...
متن کاملRepetitive transcranial magnetic stimulation in delirium: A double-blind, randomized, sham-controlled, pilot study
Purpose: Delirium is a fatal but potentially reversible disorder of Central Nervous System that adds a lot of costs on health systems. The aim of this study was to evaluate the effect of intermittent theta burst stimulation on severity and course of delirium. Methods: This was a double-blind, randomized, sham-controlled, pilot study. The participants were randomly allocated into two groups of ...
متن کاملNeuropeptide Y as a possible homeostatic element for changes in cortical excitability induced by repetitive transcranial magnetic stimulation
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is able to modify cortical excitability. Rat rTMS studies revealed a modulation of inhibitory systems, in particular that of the parvalbumin-expressing (PV+) interneurons, when using intermittent theta-burst stimulation (iTBS). OBJECTIVE The potential disinhibitory action of iTBS raises the questions of how neocortical circuits st...
متن کاملMultiple blocks of intermittent and continuous theta-burst stimulation applied via transcranial magnetic stimulation differently affect sensory responses in rat barrel cortex
KEY POINTS Theta-burst stimulation (TBS) applied via transcranial magnetic stimulation is able to modulate human cortical excitability. Here we investigated in a rat model how two different forms of TBS, intermittent (iTBS) and continuous (cTBS), affect sensory responses in rat barrel cortex. We found that iTBS but less cTBS promoted late (>18 ms) sensory response components while not affecting...
متن کاملEfficacy of prefrontal theta-burst stimulation in refractory depression: a randomized sham-controlled study.
Theta-burst transcranial magnetic stimulation could modulate cortical excitability and has the potential to treat refractory depression. However, there has been a lack of large randomized studies of the antidepressant efficacy of different forms of theta-burst stimulation, such as intermittent and continuous theta-burst stimulation. A randomized sham-controlled study was conducted to investigat...
متن کامل